Semi-Automated mapping of permafrost in the Yukon Flats - Alaska

Mats Lundh Gulbrandsen1 • Burke J. Minsley2 • Lyndsay Ball2 • Thomas Mejer Hansen1

1 Niels Bohr Institute, University of Copenhagen
2 Crustal Geophysics and Geochemistry Science Center
USGS, Denver, CO
Outline

• Motivation
• Study area
• Method
• Results / Verification
• Conclusion
Motivation

The importance of mapping permafrost:

- **Hydro-geologic processes**
 - Enhance surface – groundwater interactions through taliks
 - Alter the contribution of groundwater to stream-flow.

- **Climate Feedback**
 - Permafrost soil may constitute a substantial carbon pool.

- **Arctic ecology**
 - Changes in the wetlands
 - Enhanced fire frequency and intensity.
Study area

Minsley, B. J., et al. (2012)
Study area

Minsley, B. J., et al. (2012)
Smart Interpretation
Smart Interpretation

Geophysical Data (M)
Smart Interpretation

Geological Knowledge (d)

Geophysical Data (M)

SAGEEP Denver 2016
Slide 5
Smart Interpretation

Geological Knowledge (d)

Geophysical Data (M)

Statistical Model \(h(d,M) \)

\[h(d,M) \]

SAGEEP Denver 2016
Slide 5
Smart Interpretation

- Geological Knowledge (d)
- Geophysical Data Elsewhere \(M_{pred} \)
- Geophysical Data (M)
- Statistical Model \(h(d,M) \)

\[
M_{pred} = h(d,M) + \text{Geological Knowledge (d)} + \text{Geophysical Data Elsewhere}
\]

SAGEEP Denver 2016
Slide 5
Smart Interpretation

Geological Knowledge (d)

Geophysical Data Elsewhere M_{pred}

Predicted Geology with uncertainty $h(d_{\text{pred}}|M_{\text{pred}})$

Statistical Model $h(d,M)$

Geophysical Data (M)

$h(d,M)$

Köle (m)

Distance (m)

Log(0) (resistivity)
Where we are

Minsley, B. J., et al. (2012)
Where we are
K-means

- Define a number of cluster-centers
- Assign all points to the center they are closest to.
- Redefine the cluster-center by meaning over all within-cluster-points
- Repeat process for a number of iterations.
Using smart Interpretation

Yukon Flats line 10142

Elevation (m)

Easting (Km)

5.6 5.65 5.7 5.75 5.8 5.85

×10^5

Yukon Flats line 10142

Elevation (m)

Easting (Km)

5.6 5.65 5.7 5.75 5.8 5.85

×10^5

SAGEEP Denver 2016
Slide 16
(b) Twelvemile Lake

~900 - 1,800 y.a.?

Direction of Yukon River migration

Yukon Flats line 10142

SAGEEP Denver 2016
Slide 17
Yukon Flats line 10020

(a) Fort Yukon
 depth = 0 m
Fort Yukon borehole
Twelvemile Lake

Minsley, B. J., et al. (2012)
Permafrost Thickness

Northing (Km)

Easting (Km)

Thicknes (m)
Conclusion

By combining a clustering algorithm with a semi-automatic attribute guided regression technique, it is possible, to fast, and reliably map the thickness of permafrost in the Yukon-flats region of Alaska.

This methodology can handle huge amounts of data. Thereat all data the same, and at the same time is consistent with the expert knowledge.
Thanks for Listening